Year 9 Knowledge Organiser

Keywords		Animal and Plant Cells		
Cell	The unit of a living organism.		plant c	ell
Eukaryotic cell	Animal, plant and fungus cells. Their DNA is confined to a nucleus.	animal cell	cell wall	
Prokaryotic cell	Bacterium cell. Their DNA is not confined to a nucleus.		ribosome •	2
Diffusion	The spreading of particles from area of high to low concentration.		vacuole	
Osmosis	The diffusion of water through a partially permeable membrane from an area of high to low concentration of water.	••••	chloroplast	
Active transport	The movement of substances from a dilute solution to a more concentrated solution. Requires energy.	B1 Cell	Osmosis Key Terms	
Partially permeable membrane	A membrane that only allows certain substances to go through.	Structure and Transport	If the concentration of solutes in the solution outside the cell is the same as the internal concentration, the solution is isotonic to the cell.	ic solution
Factors Affecting	the Rate of Diffusion	Unit Conversions		normal
 Higher concentra Higher temperatu Larger surface are 	tion gradient = faster rate of diffusion. ure = faster rate of diffusion. ea of the membrane = faster rate of diffusion.	1km = 1000m 1m = 100cm 1cm = 10mm 1mm = 1000μm 1μm = 1000nm	If the concentration of solutes in the solution outside the cell is higher than the internal concentration, the solution is hypertonic to the cell.	pertonic solution
Exchanging mater	ials			Shrivelled
Large surface area Thin = short distand Good blood supply	= faster rate of diffusion ce for diffusion = maintains concentration gradient	Magnification Equation Magnification = Size of image Size of real object	If the concentration of solutes in the solution outside the cell is lower than the internal concentration, the solution is hypotonic to the cell.	hypotonic solution

Keywords			
Cell cycle	The 3 stage process of cell division in a body cells.		
Differentiate	The process where cells become specialised for a particular function.		
Stem cells	Undifferentiated cells with the potential to form a range of different cell types.		
Therapeutic cloning	Where an embryo is produced that is genetically identical to the patient so the cells are identical.		
Mitosis	Cell division that results in two genetically identical daughter cells		
Differentiation in a	nimal cells		
 As an embryo, the cells are undifferentiated. Cells are differentiated by turning some of their genes off and some of their genes on. The combination of working or inactive genes decides what organelles the cell 			
 4. The cell is now specialised for a particular function (for example, a muscle cell). 5. This does not change once the cell is mature. 			
Differentiation in plant cells			
 Undifferentiated cells are formed at active regions of the roots and shoots (meristems) through a plant's life. These cells then differentiate into specialised cells. This differentiation is not permanent. They are able to re-differentiate. 			

4. This means it is very easier to clone a plant.

The Cell Cycle

<u>Stage 1: Replication</u> The longest stage. DNA replicates to form two copies of each chromosome. All of the organelles are also doubled.

<u>Stage 2: Mitosis</u> The contents of the cell are rearranged. One set of chromosomes is pulled to each end of the cell and the nucleus divides.

<u>Stage 3: Division</u> The cytoplasm and cell membranes divide to form two identical daughter cells. In the first stage of the cell cycle, a copy of each chromosome is made.

to the ones in the original parent cell.

This normal body cell

in two pairs.

has four chromosomes

Embryonic stem cells Adult stem cells Plant stem cells (animals) (animals) B1 Cell Found in embryos in the Found in the bone Found in meristems early stages of life marrow mostly and and are capable of before the cells have present in every adult. growing into any tissue Division differentiated. Can These can grow and throughout the life of differentiate into most replace similar damaged the plan.. Allows plants different types of cells. cells to grow after they have been cut down.

Keywords		B4 - Photosynthesis
Limiting Factors	Limits the rate of reaction	Brindessynthesis
Photosynthesis	The process by which plants make food using carbon dioxide, water and light	Algae
Chloroplasts	The organelles where photosynthesis takes place	Algae are small photosynthesizing plants you find in water. They are adapted to
Chlorophyll	The green pigment contained in the chloroplasts	photosynthesis in aquatic conditions. They absorb the CO ₂ they need from the water around them

Light intensity	Temperature	Carbon dioxide levels	Leaf Adaptations
Lots of light = lots of photosynthesis. Not much light = not a lot of photosynthesis	Affects chemical reactions. The rate of photosynthesis will increase up to 40°C. After this, enzymes needed for photosynthesis are denatured.	CO_2 is the raw material for photosynthesis. There is only 0.04% CO_2 in the atmosphere. More CO_2 = photosynthesis increases	Large surface area: to absorb as much sunlight Thin: short distance for diffusion Chlorophyll: green pigment in chloroplasts necessary for photosynthesis
			Stomata: allows the diffusion of gases into and out of the leaf. Xylem: (plant veins) supply plenty of water to the leaf. Using Glucose
		<u>/</u> ,	Glucose: a small, simple, soluble sugar made during photosynthesis. Starch: an insoluble polymer (chain) of glucose. Glucose must be converted to starch for
Photosynthesis			storage.
Plants and algae have evolved to harness the energy of sunlight and use it to make the sugar glucose in a process called photosynthesis. Chloroplasts are the organelles responsible for photosynthesis, they contain the green pigment chlorophyll. Carbon dioxide + Water → Oxygen + Glucose		t to make the sugar glucose in a le for photosynthesis, they contain	Cellulose: a complex carbohydrate made from glucose to strengthen cell walls.
		cose	Amino acids: the building block of proteins, made by combining glucose with nitrate ions from the soil.
$6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow 6\text{O}_2 + \text{C}_6\text{H}_{12}\text{O}_6$			Fats & oils: made from glucose, used to strengthen cell walls and as an energy store.

Keywords		B4 - Respiration	
Aerobic respiration Breaking down glucose with oxygen to release energy and producing carbon dioxide and water.			
		Effect of Exercise	
Anaerobic respiration	Releasing energy from the breakdown of glucose without oxygen, producing lactic acid (in animals) and ethanol and carbon dioxide (in plants and microorganisms).	Heart rate: increases and the arteries to your muscles dilate. This has the effect of increasing oxygen and glucose supply and increasing carbon dioxide removal.	
Breathing	The inflation and deflation of the lungs.		
Fermentation Yeast anaerobically respiring to produce ethanol and carbon dioxide.		Breathing rate and volume: increases and you breathe more deeply. You breathe more often and also bring more air into your lungs in each breath. This increases the rate of oxygen uptake and carbon dioxide removal.	
Lactic acid	The mild poison made during anaerobic respiration.	Temperature: increases. Respiration is an exothermic reaction and some energy is lost as	
Glycogen	A carbohydrate store in animals.	heat.	
Oxygen debt The extra oxygen that must be taken into the body after exercise has stopped to complete the aerobic respiration of lactic acid.		Glycogen stores: decrease. Glycogen is converted back into glucose to supply the cells with the fuel they need for increasing cellular respiration.	
Aerobic Respiration		Metabolism and the Liver	
	glucose + oxygen → carbon dioxide + water	Metabolism is the sum of all the chemical reactions that take place in a cell or in the body.	
$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$		 The liver has many different roles:	
Respiration is the chemical process of turning glucose and oxygen into carbon dioxide and water. It releases energy and is controlled by enzymes. Respiration is an exothermic process.		 Detoxifies substances such as the ethanol from alcoholic drinks. Breaks down products into the blood so they can be excreted in urine via the 	
Anaerobic Respiration		kidneys. 3. Breaks down old, worn out blood cells and stores iron until it is needed.	
glucose → lactic acid			
$C_6H_{12}O_6 \rightarrow C_3H_6O_3$		Metabolism and the Liver	
Anaerobic respiration releases energy in the absence of oxygen. It is much less efficient than aerobic respiration. It produces a poisonous waste product called lactic acid, which can be removed by reacting it with oxygen.		The liver also deals with the lactic acid produced in anaerobic respiration. The blood transports the lactic acid to the liver. Here, it is converted back into glucose, which is then broken down in aerobic respiration to form carbon dioxide and water. If the glucose isn't	
Lactic acid + oxygen → carbon dioxide + water		needed, it can be stored as glycogen in the liver.	

Keywords	
Atom	The smallest particle of an element.
Molecule	Two or more atoms chemically bonded together.
Element	A substance made up of only one type of atom.
Compound	Substance made from two or more elements chemically bonded together.
Mixture	Two or more substances mixed together, but do not react together. A mixture is not a pure substance.
Isotope	Atoms of the same element but with different numbers of neutrons
The law of conservation of mass	During a reaction, the atoms in the are rearranged into different compounds. Therefore, mass is never gained or lost in a chemical reaction.

C1 Atomic Structure

Separating mixtures

- 1. Filtration: Using a filter to separate an insoluble solid from a liquid.
- 2. Crystallisation: The liquid (solvent) evaporates away leaving the soluble solid crystals (solute) behind.
- **3. Simple distillation:** Separates a liquid from a solution. The solution is heated, it evaporates and then condenses for collection.
- 4. Fractional distillation: Separates multiple liquids from a solution, based on boiling points.
- 5. Chromatography: separating soluble substances from one another.

The history of the atom

- Atoms used to be thought as tiny spheres that could not be split.

- The discovery of the electron lead to the **plum-pudding model** of the atom, which suggested that the atom was a ball of positive charge with negative electrons embedded in it.

- The results from the alpha scattering experiments led to the plum-pudding model being replaced by the **nuclear model**, which suggested that a small, positively charged nucleus was surrounded by electrons orbiting in shells.

- Later experiments led to the discovery of protons and neutrons.

The structure of the atom

Relative charge	Relative mass
+1	1
0	1
-1	Almost 0
	Relative charge +1 0 -1

Keywords		C1 The Periodic Table	
Alkali metals	Elements in group 1 of the periodic table.		
Halogens	Elements in group 7 of the periodic table.	Group 1 - The alkali metals	
Noble gases	Elements in group 0 of the periodic table.	- Alkali metals have characteristic properties because of the single electron in their outer shell.	
Displacement reactionA reaction where a more reactive element takes the place of a less reactive element in a compound.		 Alkali metal + water → alkali metal hydroxide + hydrogen Alkali metal + chlorine → Alkali metal chloride Alkali metal + oxygen → Alkali metal oxide 	
Transition elements	Elements from the central block of the periodic table.	- The reactivity increases going down the group.	
		Group 7 - The halogens	
The development of th	ne periodic table	- The halogens have similar reactions because they all have 7 electrons in their outer shell.	
 Elements were first classified in order of their atomic weights. The early periodic tables were incomplete. Mendeleev changed this by leaving gaps for elements that he thought had not been discovered and changed the order based on chemical properties. Elements with properties predicted by Mendeleev were discovered and filled the gaps. 		 The halogens are non-metals and consist of molecules made of pairs of atoms. (diatomic molecules) The further down the group an element is the higher its relative molecular mass, melting point, and boiling point. The reactivity decreases going down the group. A more reactive halogen can displace a less reactive halogen from an aqueous solution of its salt. 	
The arrangement of th	e periodic table	The transition elements	
 The elements are ordered by atomic number. Elements in the same group have the same number of electrons in their outer shell and this gives them similar chemical properties. The majority of elements are metals. Metals are found to the left and towards the bottom of the periodic table. Non-metals are found towards the right and top of the periodic table. Metals react to form positive ions. Non-metals react to form negative ions. 		 The transition elements are metals with similar properties which are different from those of the elements in Group 1. They are: Much less reactive than group 1 elements. Good conductors of electricity. Hard and strong. High density. High melting points (with the exception of mercury). Many transition elements have ions with different charges, form coloured compounds and are useful as catalysts. 	

Keywords	
Covalent bond	The attraction between two atoms that share one or more electrons
lonic bond	The electrostatic force of attraction between positively and negatively charged ions.
Intermolecular forces	The attraction between the individual molecules in a covalently bonded substance.
Polymer	A substance made from very large molecules made up of many repeating units
Delocalised electrons	Bonding electron that is no longer associated with any one particular atom
Fullerene	Form of the element carbon that can exist as large cage-like structures, based on hexagonal rings of carbon atoms.
Metallic bonding	The electrostatic attraction between the positively charged atomic nuclei of metal atoms and the delocalized electrons in the metal.
Alloy	A mixture of two or more elements, at least one of which is a metal.

Structures and properties

Graphite: a form of carbon in which the atoms form layers. Layers can slide over each other, so graphite is much softer than diamond. It is used in pencils. Each carbon atom in a layer is joined to three other carbons. Conducts electricity.

Diamond: a form of carbon where each carbon atom is joined to four other carbons. Diamond is very hard and has a high melting point. It does not conduct electricity.

Silica: similar structure to diamond. It is hard and has a high melting point. Contains silicon and oxygen atoms, instead of carbon atoms. It is a semiconductor, which makes it useful in the electronics industry.

C2 Structure & Bonding

Ionic Bonding	Covalent Bonding
Electrons are transferred	Electrons are shared
Ions are formed	No ions are formed
Between metals	Between non metals
High melting/boiling points	Low melting/boiling points
Conductive when liquid/molten	Non conductive – no free electrons

Drawing dot and cross diagrams

When sodium and chlorine bond, one electron is transferred from the sodium atom to the chlorine atom. In the process, both gain a full outer shell and become ions. This is ionic bonding.

When hydrogen and chlorine bond, a pair of electrons is shared between the two atoms. In this way, they both gain the one electron they need to have a full outer shell.

Metallic Bonding

Metallic bonding: Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalized electrons.

High melting and boiling points: metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.

Conducting electricity: metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.

Allotrope	Different forms of the same element.
Giant covalent structure	Compounds formed of many atoms joined together by covalent bonds.
Simple covalent molecule	Compounds, or molecules that are formed from only a few atoms joined together by covalent bonds.
Fullerene	Allotropes of carbon that include bucky balls and carbon nanotubes.

Diamond

Each carbon atom is bonded to **four** other carbon atoms by very strong covalent bonds and therefore has no free electrons. It cannot conduct electricity. The four strong covalent bonds give diamond a very high melting point.

Graphite

Each carbon is bonded to 3 carbon atoms with weak intermolecular forces between the layers, which allows the layers to easily slide over each other. They also have a delocalised electron which allows graphite to conduct electricity. Graphite is used in lubricants as the layers can slide.

C3 Structure & Bonding

Carbon nanotubes

Nanotubes are a type of fullerene and are molecularscale tubes of carbon arranged similarly to the layers in graphite.

Carbon nanotubes have a very high melting point, as each carbon atom is joined to three other carbon atoms by strong covalent bonds. This also leaves each carbon atom with a spare electron, which forms a sea of delocalised electrons within the tube, meaning nanotubes can conduct electricity.

Silicon dioxide

Silicon dioxide has the same structure as diamond. It is made from many SiO₂ molecules joined together.

Silicon dioxide (silica) is the main component of sand.

It is often used to line kilns because it can withstand extremely high temperatures.

Keywords	
Density	The amount of mass per unit of volume. It tells us how tightly matter is packed together.
Chemical Change	The substance changes as the atoms are rearranged and new bonds have been formed.
Physical Change	The substance stays the same, the atoms are just in a different arrangement.
Temperature	The average kinetic energy of the particles in a substance.
Internal Energy	The total kinetic and potential energy of the particles within a system.
Specific Heat Capacity	The amount of energy required to raise the temperature of 1kg of the substance by 1°C.
Specific Latent heat of fusion	The amount of energy needed to change 1 kg of solid to 1 kg of liquid at its melting point
Specific Latent Heat of vaporization	The amount of energy needed to change 1 kg of liquid to 1 kg of gas at its boiling point.

State of matter	Arrangement of particles	Movement of particles	Can it flow?	Can it be compressed?
Solid	Close together regular pattern	Vibrate about a fixed position	No - has a fixed shape	No
Liquid	Close together random	Move around each other	Yes - they take the shape of the container	No
Gas	Far apart random	Move quickly in random directions	Yes - they completely fill the container	Yes

P3 - The Particle Model (Topic One)

Specific Latent Heat

Latent heat is the energy needed for a substance to change state. When a change of state occurs, the energy supplied changes the internal energy but not the temperature. The energy need for a change of state to occur is affected by:

- Mass of substance
- Type of substance
- Size of forces that must be overcome

Specific latent heat can be calculated by using the following equation:

Energy = mass x latent heat E = m x L

Changing state

The picture shows a heating curve for ice. The two horizontal parts to the graph indicate a change in state.

When ice is heated, the first change in state is melting. This occurs at 0°C. At this point the solid block of ice turns into a liquid (water). The second change of state is boiling and occurs at 100°C. At this point, the liquid water evaporates to form water vapour.

When we heat a substance, the temperature remains constant during a change of state because the thermal energy added is used to break existing bonds between the molecules within the substance. When we cool a substance, the temperature remains constant during a change of state because thermal energy is released as new bonds are made.

Keywords				P4 - Atomic Structure (Topic Two)							
lon		The charged particle produced when an atom gains or loses electrons.			Туре	lonising Power	Range in air	Absorbed by	Effect of electric field		
Ionising power The ab		The ability o	e ability of a radiation to create ions.								
lonised When a and bec		When atoms and become	hen atoms in a substance exposed to radiation lose electrons in become ions.			α	High	About 5cm	Paper	Attracted towards -ve plate	
Penetrating power		The ability of radiation to pass through substances			β	Medium	About 1m	5mm Aluminium 3mm Lead	Attracted to +ve plate		
Irradiate	Jiated A substance which has been exposed to radiation but is r radioactive.		ation but is not made	Ŷ	Low	Infinite	Several cm of lead More than 1m of concrete	Unaffected			
Radioactive contamination		When radioisotopes are transferred to an object making it radioactive				1		1			
Туре	What is it?	Charge	Relative Mass	What will stop it?	Where do we use it?	The Gol	d Foil Experime	ent		a state of the sta	
α	Helium nucleus	2+	4	A few cm of air or a sheet of paper	Fire Alarms	 Ernest Rutherford fired positively charged alpha particles at a thin piece of gold foil in an experiment which lead to the rejection of the plum pudding model of the atom. The three main conclusions were: Because the majority of alpha particles passed through the foil, most of the atom is empty space. Because some of the alpha particles deflected there must be a small positively charged region 					
β	Fast moving electron	-	Almost zero	Aluminium foil or thin sheet of lead	Medical tracers						
Ŷ	EM wave	nil	zero	Very thick lead sheet or 2m of concrete	Killing bacteria Killing cancer cells	inside the atom. 3) Because alpha particles are fast moving, the positively charged region must have a large mass to stop and repel them. Detector					